当前位置:首页-专题-特征向量和特征值关系

特征向量和特征值关系

特征向量和特征值关系相关问答
  • 特征值和特征向量有关系吗?

    若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
  • 特征值和特征向量的关系是什么?

    特征值与特征向量之间关系:1、属于不同特征值的特征向量一定线性无关。2、相似矩阵有相同的特征多项式,因而有相同的特征值。3、设x是矩阵a的属于特征值1的特征向量,且a~b,即存在满秩矩阵p使b=p(-1)ap,则y=p(-1)x是矩阵b的属于特征值1的特征向量。4、n阶矩阵与对角矩阵相似的充分必要条...
  • 特征值跟特征向量之间什么关系

    一个特征值只能有一个特征向量,(非重根)又一个重根,那么有可能有两个线性无关的特征向量,也有可能没有两个线性无关的特征向量(只有一个)。不可能多于两个。如果有两个,则可对角化,如果只有一个,不能对角化;矩阵可对角化的条件:有n个线性无关的特征向量;这里不同的特征值,对应线性无...
  • 特征值与特征向量的关系是?

    从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值...
  • 特征值和特征向量有啥关系?

    乘积等于对应方阵行列式的值,和等于对应方阵对角线元素之和。特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
  • 特征值和特征向量的关系是怎样的

    特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。设A是向量空间的一个线性变换,如果空间中某一非零向量通过A变换后所...
  • 特征值与特征向量的关系

    一个特征值只能有一个特征向量。特征值和特征向量都是数学概念,若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩,σ(x)=aζ,则称x是σ的属于a的特征向量,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而...
  • 特征值和特征向量有何关系?

    特征向量是非零向量,它被矩阵对应的线性变换所拉伸的倍数就是特征值。因此,特征向量和特征值是密切相关的,特征值告诉我们特征向量在矩阵对应线性变换中的行为表现。在矩阵中找到特征向量,必须先知道特征值,并且每个特征值都对应或多个特征向量。因此,特征值和特征向量是线性代数中的基本概念,在很多...
  • 特征值与特征向量的关系是什么?

    特征值是指设是n阶方阵,如果存在数和非零n维列向量,使得成立,则称是的一个特征值或本征值。非零n维列向量x称为矩阵的属于(对应于)特征值的特征向量或本征向量,简称的特征向量或的本征向量。设为n阶矩阵,若存在常数及n维非零向量,使得,则称是矩阵的特征值,是属于特征值的特征向量。A的...
  • 矩阵的特征值和特征向量有什么联系和区别吗?

    设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。设A是数域P上的一...
Top